Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{3x^{2}}{250}-\frac{3x^{3}}{2500}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{3x^{2}}{250}\mathrm{d}x+\int -\frac{3x^{3}}{2500}\mathrm{d}x
Integrate the sum term by term.
\frac{3\int x^{2}\mathrm{d}x}{250}-\frac{3\int x^{3}\mathrm{d}x}{2500}
Factor out the constant in each of the terms.
\frac{x^{3}}{250}-\frac{3\int x^{3}\mathrm{d}x}{2500}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 0.012 times \frac{x^{3}}{3}.
\frac{x^{3}}{250}-\frac{3x^{4}}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.0012 times \frac{x^{4}}{4}.
\frac{10^{3}}{250}-\frac{3}{10000}\times 10^{4}-\left(\frac{7^{3}}{250}-\frac{3}{10000}\times 7^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3483}{10000}
Simplify.