Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-28x^{3}+286x^{2}-1260x+2025\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -28x^{3}\mathrm{d}x+\int 286x^{2}\mathrm{d}x+\int -1260x\mathrm{d}x+\int 2025\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-28\int x^{3}\mathrm{d}x+286\int x^{2}\mathrm{d}x-1260\int x\mathrm{d}x+\int 2025\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-28\int x^{3}\mathrm{d}x+286\int x^{2}\mathrm{d}x-1260\int x\mathrm{d}x+\int 2025\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-7x^{4}+286\int x^{2}\mathrm{d}x-1260\int x\mathrm{d}x+\int 2025\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -28 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-7x^{4}+\frac{286x^{3}}{3}-1260\int x\mathrm{d}x+\int 2025\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 286 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-7x^{4}+\frac{286x^{3}}{3}-630x^{2}+\int 2025\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1260 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}-7x^{4}+\frac{286x^{3}}{3}-630x^{2}+2025x
Find the integral of 2025 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{9^{5}}{5}-7\times 9^{4}+\frac{286}{3}\times 9^{3}-630\times 9^{2}+2025\times 9-\left(\frac{5^{5}}{5}-7\times 5^{4}+\frac{286}{3}\times 5^{3}-630\times 5^{2}+2025\times 5\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{512}{15}
Simplify.