Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x-4x\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int -4x\mathrm{d}x
Integrate the sum term by term.
\int x\mathrm{d}x-4\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{2}-4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}-2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
-\frac{3x^{2}}{2}
Simplify.
-\frac{3}{2}\times 6^{2}+\frac{3}{2}\times 3^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{81}{2}
Simplify.