Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{3}^{12}7x+\frac{3078+17}{18}\mathrm{d}x
Multiply 171 and 18 to get 3078.
\int _{3}^{12}7x+\frac{3095}{18}\mathrm{d}x
Add 3078 and 17 to get 3095.
\int 7x+\frac{3095}{18}\mathrm{d}x
Evaluate the indefinite integral first.
\int 7x\mathrm{d}x+\int \frac{3095}{18}\mathrm{d}x
Integrate the sum term by term.
7\int x\mathrm{d}x+\int \frac{3095}{18}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{7x^{2}}{2}+\int \frac{3095}{18}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 7 times \frac{x^{2}}{2}.
\frac{7x^{2}}{2}+\frac{3095x}{18}
Find the integral of \frac{3095}{18} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{7}{2}\times 12^{2}+\frac{3095}{18}\times 12-\left(\frac{7}{2}\times 3^{2}+\frac{3095}{18}\times 3\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2020
Simplify.