Evaluate
2020
Share
Copied to clipboard
\int _{3}^{12}7x+\frac{3078+17}{18}\mathrm{d}x
Multiply 171 and 18 to get 3078.
\int _{3}^{12}7x+\frac{3095}{18}\mathrm{d}x
Add 3078 and 17 to get 3095.
\int 7x+\frac{3095}{18}\mathrm{d}x
Evaluate the indefinite integral first.
\int 7x\mathrm{d}x+\int \frac{3095}{18}\mathrm{d}x
Integrate the sum term by term.
7\int x\mathrm{d}x+\int \frac{3095}{18}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{7x^{2}}{2}+\int \frac{3095}{18}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 7 times \frac{x^{2}}{2}.
\frac{7x^{2}}{2}+\frac{3095x}{18}
Find the integral of \frac{3095}{18} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{7}{2}\times 12^{2}+\frac{3095}{18}\times 12-\left(\frac{7}{2}\times 3^{2}+\frac{3095}{18}\times 3\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2020
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}