Evaluate
\frac{31023691\ln(2)}{2500}\approx 8601.593578885
Share
Copied to clipboard
\int _{25\times 10^{-3}}^{100\times 10^{-3}}\frac{746.3\times 8.314}{x}\mathrm{d}x
Multiply 2 and 373.15 to get 746.3.
\int _{25\times 10^{-3}}^{100\times 10^{-3}}\frac{6204.7382}{x}\mathrm{d}x
Multiply 746.3 and 8.314 to get 6204.7382.
\int _{25\times \frac{1}{1000}}^{100\times 10^{-3}}\frac{6204.7382}{x}\mathrm{d}x
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\int _{\frac{1}{40}}^{100\times 10^{-3}}\frac{6204.7382}{x}\mathrm{d}x
Multiply 25 and \frac{1}{1000} to get \frac{1}{40}.
\int _{\frac{1}{40}}^{100\times \frac{1}{1000}}\frac{6204.7382}{x}\mathrm{d}x
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\int _{\frac{1}{40}}^{\frac{1}{10}}\frac{6204.7382}{x}\mathrm{d}x
Multiply 100 and \frac{1}{1000} to get \frac{1}{10}.
\int \frac{31023691}{5000x}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{31023691\int \frac{1}{x}\mathrm{d}x}{5000}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{31023691\ln(|x|)}{5000}
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
6204.7382\ln(|\frac{1}{10}|)-6204.7382\ln(|\frac{1}{40}|)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{31023691\ln(2)}{2500}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}