Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{25\times 10^{-3}}^{100\times 10^{-3}}\frac{746.3\times 8.314}{x}\mathrm{d}x
Multiply 2 and 373.15 to get 746.3.
\int _{25\times 10^{-3}}^{100\times 10^{-3}}\frac{6204.7382}{x}\mathrm{d}x
Multiply 746.3 and 8.314 to get 6204.7382.
\int _{25\times \frac{1}{1000}}^{100\times 10^{-3}}\frac{6204.7382}{x}\mathrm{d}x
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\int _{\frac{1}{40}}^{100\times 10^{-3}}\frac{6204.7382}{x}\mathrm{d}x
Multiply 25 and \frac{1}{1000} to get \frac{1}{40}.
\int _{\frac{1}{40}}^{100\times \frac{1}{1000}}\frac{6204.7382}{x}\mathrm{d}x
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\int _{\frac{1}{40}}^{\frac{1}{10}}\frac{6204.7382}{x}\mathrm{d}x
Multiply 100 and \frac{1}{1000} to get \frac{1}{10}.
\int \frac{31023691}{5000x}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{31023691\int \frac{1}{x}\mathrm{d}x}{5000}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{31023691\ln(|x|)}{5000}
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
6204.7382\ln(|\frac{1}{10}|)-6204.7382\ln(|\frac{1}{40}|)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{31023691\ln(2)}{2500}
Simplify.