Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{2}^{7}\left(41.12x-\frac{5}{2}\left(x-2\right)\right)\times \frac{7}{23}\mathrm{d}x
Combine -2\left(x-2\right) and -\frac{x-2}{2} to get -\frac{5}{2}\left(x-2\right).
\int _{2}^{7}\left(41.12x-\frac{5}{2}x-\frac{5}{2}\left(-2\right)\right)\times \frac{7}{23}\mathrm{d}x
Use the distributive property to multiply -\frac{5}{2} by x-2.
\int _{2}^{7}\left(41.12x-\frac{5}{2}x+\frac{-5\left(-2\right)}{2}\right)\times \frac{7}{23}\mathrm{d}x
Express -\frac{5}{2}\left(-2\right) as a single fraction.
\int _{2}^{7}\left(41.12x-\frac{5}{2}x+\frac{10}{2}\right)\times \frac{7}{23}\mathrm{d}x
Multiply -5 and -2 to get 10.
\int _{2}^{7}\left(41.12x-\frac{5}{2}x+5\right)\times \frac{7}{23}\mathrm{d}x
Divide 10 by 2 to get 5.
\int _{2}^{7}\left(\frac{1931}{50}x+5\right)\times \frac{7}{23}\mathrm{d}x
Combine 41.12x and -\frac{5}{2}x to get \frac{1931}{50}x.
\int _{2}^{7}\frac{1931}{50}x\times \frac{7}{23}+5\times \frac{7}{23}\mathrm{d}x
Use the distributive property to multiply \frac{1931}{50}x+5 by \frac{7}{23}.
\int _{2}^{7}\frac{1931\times 7}{50\times 23}x+5\times \frac{7}{23}\mathrm{d}x
Multiply \frac{1931}{50} times \frac{7}{23} by multiplying numerator times numerator and denominator times denominator.
\int _{2}^{7}\frac{13517}{1150}x+5\times \frac{7}{23}\mathrm{d}x
Do the multiplications in the fraction \frac{1931\times 7}{50\times 23}.
\int _{2}^{7}\frac{13517}{1150}x+\frac{5\times 7}{23}\mathrm{d}x
Express 5\times \frac{7}{23} as a single fraction.
\int _{2}^{7}\frac{13517}{1150}x+\frac{35}{23}\mathrm{d}x
Multiply 5 and 7 to get 35.
\int \frac{13517x}{1150}+\frac{35}{23}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{13517x}{1150}\mathrm{d}x+\int \frac{35}{23}\mathrm{d}x
Integrate the sum term by term.
\frac{13517\int x\mathrm{d}x}{1150}+\int \frac{35}{23}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{13517x^{2}}{2300}+\int \frac{35}{23}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply \frac{13517}{1150} times \frac{x^{2}}{2}.
\frac{13517x^{2}}{2300}+\frac{35x}{23}
Find the integral of \frac{35}{23} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{13517}{2300}\times 7^{2}+\frac{35}{23}\times 7-\left(\frac{13517}{2300}\times 2^{2}+\frac{35}{23}\times 2\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{125153}{460}
Simplify.