Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{2}^{3}\frac{8}{x^{-2}}+\frac{\left(9+20x\right)x^{-2}}{x^{-2}}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply 9+20x times \frac{x^{-2}}{x^{-2}}.
\int _{2}^{3}\frac{8+\left(9+20x\right)x^{-2}}{x^{-2}}\mathrm{d}x
Since \frac{8}{x^{-2}} and \frac{\left(9+20x\right)x^{-2}}{x^{-2}} have the same denominator, add them by adding their numerators.
\int _{2}^{3}\frac{8+9x^{-2}+20\times \frac{1}{x}}{x^{-2}}\mathrm{d}x
Do the multiplications in 8+\left(9+20x\right)x^{-2}.
\int _{2}^{3}\frac{8+\left(9+20x\right)x^{-2}}{x^{-2}}\mathrm{d}x
Combine like terms in 8+9x^{-2}+20\times \frac{1}{x}.
\int _{2}^{3}\frac{8x^{-2}\left(x-\left(-\frac{1}{4}\sqrt{7}-\frac{5}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{7}-\frac{5}{4}\right)\right)}{x^{-2}}\mathrm{d}x
Factor the expressions that are not already factored in \frac{8+\left(9+20x\right)x^{-2}}{x^{-2}}.
\int _{2}^{3}8\left(x-\left(-\frac{1}{4}\sqrt{7}-\frac{5}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{7}-\frac{5}{4}\right)\right)\mathrm{d}x
Cancel out x^{-2} in both numerator and denominator.
\int _{2}^{3}8x^{2}+20x+9\mathrm{d}x
Expand the expression.
\int 8x^{2}+20x+9\mathrm{d}x
Evaluate the indefinite integral first.
\int 8x^{2}\mathrm{d}x+\int 20x\mathrm{d}x+\int 9\mathrm{d}x
Integrate the sum term by term.
8\int x^{2}\mathrm{d}x+20\int x\mathrm{d}x+\int 9\mathrm{d}x
Factor out the constant in each of the terms.
\frac{8x^{3}}{3}+20\int x\mathrm{d}x+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 8 times \frac{x^{3}}{3}.
\frac{8x^{3}}{3}+10x^{2}+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 20 times \frac{x^{2}}{2}.
\frac{8x^{3}}{3}+10x^{2}+9x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{8x^{3}}{3}+9x+10x^{2}
Simplify.
\frac{8}{3}\times 3^{3}+9\times 3+10\times 3^{2}-\left(\frac{8}{3}\times 2^{3}+9\times 2+10\times 2^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{329}{3}
Simplify.