Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 9x^{2}-12x+13\mathrm{d}x
Evaluate the indefinite integral first.
\int 9x^{2}\mathrm{d}x+\int -12x\mathrm{d}x+\int 13\mathrm{d}x
Integrate the sum term by term.
9\int x^{2}\mathrm{d}x-12\int x\mathrm{d}x+\int 13\mathrm{d}x
Factor out the constant in each of the terms.
3x^{3}-12\int x\mathrm{d}x+\int 13\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 9 times \frac{x^{3}}{3}.
3x^{3}-6x^{2}+\int 13\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -12 times \frac{x^{2}}{2}.
3x^{3}-6x^{2}+13x
Find the integral of 13 using the table of common integrals rule \int a\mathrm{d}x=ax.
3\times \left(\frac{2}{3}\right)^{3}-6\times \left(\frac{2}{3}\right)^{2}+13\times \frac{2}{3}-\left(3\times \left(\frac{1}{3}\right)^{3}-6\times \left(\frac{1}{3}\right)^{2}+13\times \frac{1}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{28}{9}
Simplify.