Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{4}x^{2}+8x+16\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
\int x^{2}+8x+16\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 8x\mathrm{d}x+\int 16\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int 16\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+8\int x\mathrm{d}x+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+4x^{2}+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 8 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}+4x^{2}+16x
Find the integral of 16 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4^{3}}{3}+4\times 4^{2}+16\times 4-\left(\frac{1^{3}}{3}+4\times 1^{2}+16\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
129
Simplify.