Evaluate
129
Share
Copied to clipboard
\int _{1}^{4}x^{2}+8x+16\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
\int x^{2}+8x+16\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 8x\mathrm{d}x+\int 16\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int 16\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+8\int x\mathrm{d}x+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+4x^{2}+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 8 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}+4x^{2}+16x
Find the integral of 16 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4^{3}}{3}+4\times 4^{2}+16\times 4-\left(\frac{1^{3}}{3}+4\times 1^{2}+16\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
129
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}