Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{4}\sqrt{x}-\left(\sqrt{x}\right)^{2}\mathrm{d}x
Use the distributive property to multiply \sqrt{x} by 1-\sqrt{x}.
\int _{1}^{4}\sqrt{x}-x\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int \sqrt{x}-x\mathrm{d}x
Evaluate the indefinite integral first.
\int \sqrt{x}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{\frac{3}{2}}}{3}-\int x\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{2}{3}\times 4^{\frac{3}{2}}-\frac{4^{2}}{2}-\left(\frac{2}{3}\times 1^{\frac{3}{2}}-\frac{1^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{17}{6}
Simplify.