Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x-\sqrt{\frac{1}{x}}\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int -\frac{1}{\sqrt{x}}\mathrm{d}x
Integrate the sum term by term.
\int x\mathrm{d}x-\int \frac{1}{\sqrt{x}}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{2}-\int \frac{1}{\sqrt{x}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}-2\sqrt{x}
Rewrite \frac{1}{\sqrt{x}} as x^{-\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Simplify and convert from exponential to radical form. Multiply -1 times 2\sqrt{x}.
\frac{2^{2}}{2}-2\times 2^{\frac{1}{2}}-\left(\frac{1^{2}}{2}-2\times 1^{\frac{1}{2}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7}{2}-2\sqrt{2}
Simplify.