Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{2}\left(x^{2}-x\right)\left(x-2\right)\mathrm{d}x
Use the distributive property to multiply x by x-1.
\int _{1}^{2}x^{3}-2x^{2}-x^{2}+2x\mathrm{d}x
Apply the distributive property by multiplying each term of x^{2}-x by each term of x-2.
\int _{1}^{2}x^{3}-3x^{2}+2x\mathrm{d}x
Combine -2x^{2} and -x^{2} to get -3x^{2}.
\int x^{3}-3x^{2}+2x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -3x^{2}\mathrm{d}x+\int 2x\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-3\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-x^{3}+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-x^{3}+x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\frac{2^{4}}{4}-2^{3}+2^{2}-\left(\frac{1^{4}}{4}-1^{3}+1^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1}{4}
Simplify.