Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2y-y^{2}\mathrm{d}y
Evaluate the indefinite integral first.
\int 2y\mathrm{d}y+\int -y^{2}\mathrm{d}y
Integrate the sum term by term.
2\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
Factor out the constant in each of the terms.
y^{2}-\int y^{2}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply 2 times \frac{y^{2}}{2}.
y^{2}-\frac{y^{3}}{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -1 times \frac{y^{3}}{3}.
2^{2}-\frac{2^{3}}{3}-\left(1^{2}-\frac{1^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2}{3}
Simplify.