Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}z\mathrm{d}z
Evaluate the indefinite integral first.
x^{2}\int z\mathrm{d}z
Factor out the constant using \int af\left(z\right)\mathrm{d}z=a\int f\left(z\right)\mathrm{d}z.
x^{2}\times \frac{z^{2}}{2}
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z\mathrm{d}z with \frac{z^{2}}{2}.
\frac{x^{2}z^{2}}{2}
Simplify.
\frac{1}{2}x^{2}\times 2^{2}-\frac{1}{2}x^{2}\times 1^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3x^{2}}{2}
Simplify.