Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+x-55\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int -55\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int x\mathrm{d}x+\int -55\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{x^{2}}{2}+\int -55\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{x^{2}}{2}-55x
Find the integral of -55 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2^{3}}{3}+\frac{2^{2}}{2}-55\times 2-\left(\frac{1^{3}}{3}+\frac{1^{2}}{2}-55\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{307}{6}
Simplify.