Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{3}{t^{2}}-1\mathrm{d}t
Evaluate the indefinite integral first.
\int \frac{3}{t^{2}}\mathrm{d}t+\int -1\mathrm{d}t
Integrate the sum term by term.
3\int \frac{1}{t^{2}}\mathrm{d}t+\int -1\mathrm{d}t
Factor out the constant in each of the terms.
-\frac{3}{t}+\int -1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{t^{2}}\mathrm{d}t with -\frac{1}{t}. Multiply 3 times -\frac{1}{t}.
-\frac{3}{t}-t
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}t=at.
-3\times 2^{-1}-2-\left(-3\times 1^{-1}-1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{2}
Simplify.