Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -20x^{3}+240x^{2}-1200\mathrm{d}x
Evaluate the indefinite integral first.
\int -20x^{3}\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int -1200\mathrm{d}x
Integrate the sum term by term.
-20\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int -1200\mathrm{d}x
Factor out the constant in each of the terms.
-5x^{4}+240\int x^{2}\mathrm{d}x+\int -1200\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -20 times \frac{x^{4}}{4}.
-5x^{4}+80x^{3}+\int -1200\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 240 times \frac{x^{3}}{3}.
-5x^{4}+80x^{3}-1200x
Find the integral of -1200 using the table of common integrals rule \int a\mathrm{d}x=ax.
-5\times 10^{4}+80\times 10^{3}-1200\times 10-\left(-5\times 1^{4}+80\times 1^{3}-1200\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
19125
Simplify.