Evaluate
19125
Share
Copied to clipboard
\int -20x^{3}+240x^{2}-1200\mathrm{d}x
Evaluate the indefinite integral first.
\int -20x^{3}\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int -1200\mathrm{d}x
Integrate the sum term by term.
-20\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int -1200\mathrm{d}x
Factor out the constant in each of the terms.
-5x^{4}+240\int x^{2}\mathrm{d}x+\int -1200\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -20 times \frac{x^{4}}{4}.
-5x^{4}+80x^{3}+\int -1200\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 240 times \frac{x^{3}}{3}.
-5x^{4}+80x^{3}-1200x
Find the integral of -1200 using the table of common integrals rule \int a\mathrm{d}x=ax.
-5\times 10^{4}+80\times 10^{3}-1200\times 10-\left(-5\times 1^{4}+80\times 1^{3}-1200\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
19125
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}