Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{1}^{\frac{3}{2}}x^{4}-6x^{3}+13x^{2}-12x+4\mathrm{d}x
Square x^{2}-3x+2.
\int x^{4}-6x^{3}+13x^{2}-12x+4\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -6x^{3}\mathrm{d}x+\int 13x^{2}\mathrm{d}x+\int -12x\mathrm{d}x+\int 4\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-6\int x^{3}\mathrm{d}x+13\int x^{2}\mathrm{d}x-12\int x\mathrm{d}x+\int 4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-6\int x^{3}\mathrm{d}x+13\int x^{2}\mathrm{d}x-12\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+13\int x^{2}\mathrm{d}x-12\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -6 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+\frac{13x^{3}}{3}-12\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 13 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+\frac{13x^{3}}{3}-6x^{2}+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -12 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+\frac{13x^{3}}{3}-6x^{2}+4x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{\left(\frac{3}{2}\right)^{5}}{5}-\frac{3}{2}\times \left(\frac{3}{2}\right)^{4}+\frac{13}{3}\times \left(\frac{3}{2}\right)^{3}-6\times \left(\frac{3}{2}\right)^{2}+4\times \frac{3}{2}-\left(\frac{1^{5}}{5}-\frac{3}{2}\times 1^{4}+\frac{13}{3}\times 1^{3}-6\times 1^{2}+4\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{60}
Simplify.