Evaluate
14641
Share
Copied to clipboard
\int _{0\times 0}^{121}2x\mathrm{d}x-0
Multiply 0 and 0 to get 0.
\int _{0}^{121}2x\mathrm{d}x-0
Multiply 0 and 0 to get 0.
\int _{0}^{121}2x\mathrm{d}x+0
Multiply -1 and 0 to get 0.
\int _{0}^{121}2x\mathrm{d}x
Anything plus zero gives itself.
\int 2x\mathrm{d}x
Evaluate the indefinite integral first.
2\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
121^{2}-0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
14641
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}