Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{12.1}2x\mathrm{d}x+0
Multiply -1 and 0 to get 0.
\int _{0}^{12.1}2x\mathrm{d}x
Anything plus zero gives itself.
\int 2x\mathrm{d}x
Evaluate the indefinite integral first.
2\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
12.1^{2}-0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
146.41
Simplify.