Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{8}\left(-0.55361x+0.083x^{2}\right)x\mathrm{d}x
Use the distributive property to multiply 6.67x-x^{2} by -0.083.
\int _{0}^{8}-0.55361x^{2}+0.083x^{3}\mathrm{d}x
Use the distributive property to multiply -0.55361x+0.083x^{2} by x.
\int -\frac{55361x^{2}}{100000}+\frac{83x^{3}}{1000}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{55361x^{2}}{100000}\mathrm{d}x+\int \frac{83x^{3}}{1000}\mathrm{d}x
Integrate the sum term by term.
-\frac{55361\int x^{2}\mathrm{d}x}{100000}+\frac{83\int x^{3}\mathrm{d}x}{1000}
Factor out the constant in each of the terms.
-\frac{55361x^{3}}{300000}+\frac{83\int x^{3}\mathrm{d}x}{1000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.55361 times \frac{x^{3}}{3}.
-\frac{55361x^{3}}{300000}+\frac{83x^{4}}{4000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 0.083 times \frac{x^{4}}{4}.
-\frac{55361}{300000}\times 8^{3}+\frac{83}{4000}\times 8^{4}-\left(-\frac{55361}{300000}\times 0^{3}+\frac{83}{4000}\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{88976}{9375}
Simplify.