Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{8}-1.33x\left(-0.083\right)x\mathrm{d}x
Combine -5.33x and 4x to get -1.33x.
\int _{0}^{8}0.11039xx\mathrm{d}x
Multiply -1.33 and -0.083 to get 0.11039.
\int _{0}^{8}0.11039x^{2}\mathrm{d}x
Multiply x and x to get x^{2}.
\int \frac{11039x^{2}}{100000}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{11039\int x^{2}\mathrm{d}x}{100000}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{11039x^{3}}{300000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{11039}{300000}\times 8^{3}-\frac{11039}{300000}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{176624}{9375}
Simplify.