Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -16-8x+\frac{80}{3}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int -16\mathrm{d}x+\int -8x\mathrm{d}x+\int \frac{80}{3}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\int -16\mathrm{d}x-8\int x\mathrm{d}x+\int \frac{80}{3}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
-16x-8\int x\mathrm{d}x+\int \frac{80}{3}\mathrm{d}x+\int x\mathrm{d}x
Find the integral of -16 using the table of common integrals rule \int a\mathrm{d}x=ax.
-16x-4x^{2}+\int \frac{80}{3}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -8 times \frac{x^{2}}{2}.
-16x-4x^{2}+\frac{80x}{3}+\int x\mathrm{d}x
Find the integral of \frac{80}{3} using the table of common integrals rule \int a\mathrm{d}x=ax.
-16x-4x^{2}+\frac{80x}{3}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{32x}{3}-\frac{7x^{2}}{2}
Simplify.
\frac{32}{3}\times 8-\frac{7}{2}\times 8^{2}-\left(\frac{32}{3}\times 0-\frac{7}{2}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{416}{3}
Simplify.