Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{8}-133x^{2}\left(-\frac{1}{12}\right)\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{8}\frac{-133\left(-1\right)}{12}x^{2}\mathrm{d}x
Express -133\left(-\frac{1}{12}\right) as a single fraction.
\int _{0}^{8}\frac{133}{12}x^{2}\mathrm{d}x
Multiply -133 and -1 to get 133.
\int \frac{133x^{2}}{12}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{133\int x^{2}\mathrm{d}x}{12}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{133x^{3}}{36}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{133}{36}\times 8^{3}-\frac{133}{36}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{17024}{9}
Simplify.