Evaluate
\frac{4256}{225}\approx 18.915555556
Share
Copied to clipboard
\int _{0}^{8}-1.33x^{2}\left(-\frac{1}{12}\right)\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{8}-\frac{133}{100}x^{2}\left(-\frac{1}{12}\right)\mathrm{d}x
Convert decimal number -1.33 to fraction -\frac{133}{100}.
\int _{0}^{8}\frac{-133\left(-1\right)}{100\times 12}x^{2}\mathrm{d}x
Multiply -\frac{133}{100} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\int _{0}^{8}\frac{133}{1200}x^{2}\mathrm{d}x
Do the multiplications in the fraction \frac{-133\left(-1\right)}{100\times 12}.
\int \frac{133x^{2}}{1200}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{133\int x^{2}\mathrm{d}x}{1200}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{133x^{3}}{3600}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{133}{3600}\times 8^{3}-\frac{133}{3600}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{4256}{225}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}