Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{8}\frac{-1.3x^{2}\left(-0.08\right)}{2}\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{8}\frac{0.104x^{2}}{2}\mathrm{d}x
Multiply -1.3 and -0.08 to get 0.104.
\int _{0}^{8}0.052x^{2}\mathrm{d}x
Divide 0.104x^{2} by 2 to get 0.052x^{2}.
\int \frac{13x^{2}}{250}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{13\int x^{2}\mathrm{d}x}{250}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{13x^{3}}{750}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{13}{750}\times 8^{3}-\frac{13}{750}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3328}{375}
Simplify.