Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{6}\frac{0.55x^{3}\times 1}{2}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int _{0}^{6}\frac{0.55x^{3}}{2}\mathrm{d}x
Multiply 0.55 and 1 to get 0.55.
\int _{0}^{6}0.275x^{3}\mathrm{d}x
Divide 0.55x^{3} by 2 to get 0.275x^{3}.
\int \frac{11x^{3}}{40}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{11\int x^{3}\mathrm{d}x}{40}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{11x^{4}}{160}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{11}{160}\times 6^{4}-\frac{11}{160}\times 0^{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{891}{10}
Simplify.