Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{5}\frac{1}{2}x+2\mathrm{d}x
Combine x and -\frac{x}{2} to get \frac{1}{2}x.
\int \frac{x}{2}+2\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{x}{2}\mathrm{d}x+\int 2\mathrm{d}x
Integrate the sum term by term.
\frac{\int x\mathrm{d}x}{2}+\int 2\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{4}+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply \frac{1}{2} times \frac{x^{2}}{2}.
\frac{x^{2}}{4}+2x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5^{2}}{4}+2\times 5-\left(\frac{0^{2}}{4}+2\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{65}{4}
Simplify.