Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}87.5x+24x^{2}\mathrm{d}x
Use the distributive property to multiply 87.5+24x by x.
\int \frac{175x}{2}+24x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{175x}{2}\mathrm{d}x+\int 24x^{2}\mathrm{d}x
Integrate the sum term by term.
\frac{175\int x\mathrm{d}x}{2}+24\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{175x^{2}}{4}+24\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 87.5 times \frac{x^{2}}{2}.
\frac{175x^{2}}{4}+8x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 24 times \frac{x^{3}}{3}.
\frac{175}{4}\times 4^{2}+8\times 4^{3}-\left(\frac{175}{4}\times 0^{2}+8\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1212
Simplify.