Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-0.88x-0.44x^{2}+0.8+0.4x\mathrm{d}x
Apply the distributive property by multiplying each term of 4.4x-4 by each term of -0.2-0.1x.
\int _{0}^{4}-0.48x-0.44x^{2}+0.8\mathrm{d}x
Combine -0.88x and 0.4x to get -0.48x.
\int -\frac{12x}{25}-\frac{11x^{2}}{25}+0.8\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{12x}{25}\mathrm{d}x+\int -\frac{11x^{2}}{25}\mathrm{d}x+\int 0.8\mathrm{d}x
Integrate the sum term by term.
-\frac{12\int x\mathrm{d}x}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{6x^{2}}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -0.48 times \frac{x^{2}}{2}.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\int 0.8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.44 times \frac{x^{3}}{3}.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\frac{4x}{5}
Find the integral of 0.8 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{6}{25}\times 4^{2}-\frac{11}{75}\times 4^{3}+0.8\times 4-\left(-\frac{6}{25}\times 0^{2}-\frac{11}{75}\times 0^{3}+0.8\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{752}{75}
Simplify.