Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{69x}{25}-\frac{3x^{3}}{10}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{69x}{25}\mathrm{d}x+\int -\frac{3x^{3}}{10}\mathrm{d}x
Integrate the sum term by term.
\frac{69\int x\mathrm{d}x}{25}-\frac{3\int x^{3}\mathrm{d}x}{10}
Factor out the constant in each of the terms.
\frac{69x^{2}}{50}-\frac{3\int x^{3}\mathrm{d}x}{10}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2.76 times \frac{x^{2}}{2}.
\frac{69x^{2}}{50}-\frac{3x^{4}}{40}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.3 times \frac{x^{4}}{4}.
\frac{69}{50}\times 4^{2}-\frac{3}{40}\times 4^{4}-\left(\frac{69}{50}\times 0^{2}-\frac{3}{40}\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{72}{25}
Simplify.