Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}2.65625x^{2}-0.25x^{3}-5.25x\mathrm{d}x
Use the distributive property to multiply 2x^{2}-5.25x by 1-0.125x and combine like terms.
\int \frac{85x^{2}}{32}-\frac{x^{3}}{4}-\frac{21x}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{85x^{2}}{32}\mathrm{d}x+\int -\frac{x^{3}}{4}\mathrm{d}x+\int -\frac{21x}{4}\mathrm{d}x
Integrate the sum term by term.
\frac{85\int x^{2}\mathrm{d}x}{32}-\frac{\int x^{3}\mathrm{d}x}{4}-\frac{21\int x\mathrm{d}x}{4}
Factor out the constant in each of the terms.
\frac{85x^{3}}{96}-\frac{\int x^{3}\mathrm{d}x}{4}-\frac{21\int x\mathrm{d}x}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2.65625 times \frac{x^{3}}{3}.
\frac{85x^{3}}{96}-\frac{x^{4}}{16}-\frac{21\int x\mathrm{d}x}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.25 times \frac{x^{4}}{4}.
\frac{85x^{3}}{96}-\frac{x^{4}}{16}-\frac{21x^{2}}{8}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -5.25 times \frac{x^{2}}{2}.
\frac{85}{96}\times 4^{3}-\frac{4^{4}}{16}-\frac{21}{8}\times 4^{2}-\left(\frac{85}{96}\times 0^{3}-\frac{0^{4}}{16}-\frac{21}{8}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{4}{3}
Simplify.