Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 12x+6x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 12x\mathrm{d}x+\int 6x^{2}\mathrm{d}x
Integrate the sum term by term.
12\int x\mathrm{d}x+6\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
6x^{2}+6\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 12 times \frac{x^{2}}{2}.
6x^{2}+2x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
6\times 4^{2}+2\times 4^{3}-\left(6\times 0^{2}+2\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
224
Simplify.