Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{23x}{50}-\frac{x^{3}}{20}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{23x}{50}\mathrm{d}x+\int -\frac{x^{3}}{20}\mathrm{d}x
Integrate the sum term by term.
\frac{23\int x\mathrm{d}x}{50}-\frac{\int x^{3}\mathrm{d}x}{20}
Factor out the constant in each of the terms.
\frac{23x^{2}}{100}-\frac{\int x^{3}\mathrm{d}x}{20}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 0.46 times \frac{x^{2}}{2}.
\frac{23x^{2}}{100}-\frac{x^{4}}{80}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.05 times \frac{x^{4}}{4}.
\frac{23}{100}\times 4^{2}-\frac{4^{4}}{80}-\left(\frac{23}{100}\times 0^{2}-\frac{0^{4}}{80}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{12}{25}
Simplify.