Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-87.5x+38.5x^{2}\mathrm{d}x
Use the distributive property to multiply -87.5+38.5x by x.
\int \frac{-175x+77x^{2}}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{175x}{2}\mathrm{d}x+\int \frac{77x^{2}}{2}\mathrm{d}x
Integrate the sum term by term.
\frac{-175\int x\mathrm{d}x+77\int x^{2}\mathrm{d}x}{2}
Factor out the constant in each of the terms.
-\frac{175x^{2}}{4}+\frac{77\int x^{2}\mathrm{d}x}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -87.5 times \frac{x^{2}}{2}.
-\frac{175x^{2}}{4}+\frac{77x^{3}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 38.5 times \frac{x^{3}}{3}.
-\frac{175}{4}\times 4^{2}+\frac{77}{6}\times 4^{3}-\left(-\frac{175}{4}\times 0^{2}+\frac{77}{6}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{364}{3}
Simplify.