Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-61x\times 0.5x\mathrm{d}x
Combine -72x and 11x to get -61x.
\int _{0}^{4}-30.5xx\mathrm{d}x
Multiply -61 and 0.5 to get -30.5.
\int _{0}^{4}-30.5x^{2}\mathrm{d}x
Multiply x and x to get x^{2}.
\int -\frac{61x^{2}}{2}\mathrm{d}x
Evaluate the indefinite integral first.
-\frac{61\int x^{2}\mathrm{d}x}{2}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{61x^{3}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
-\frac{61}{6}\times 4^{3}+\frac{61}{6}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1952}{3}
Simplify.