Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}\left(0.74x-0.1x^{2}\right)x\mathrm{d}x
Use the distributive property to multiply -7.4x+x^{2} by -0.1.
\int _{0}^{4}0.74x^{2}-0.1x^{3}\mathrm{d}x
Use the distributive property to multiply 0.74x-0.1x^{2} by x.
\int \frac{37x^{2}}{50}-\frac{x^{3}}{10}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{37x^{2}}{50}\mathrm{d}x+\int -\frac{x^{3}}{10}\mathrm{d}x
Integrate the sum term by term.
\frac{37\int x^{2}\mathrm{d}x}{50}-\frac{\int x^{3}\mathrm{d}x}{10}
Factor out the constant in each of the terms.
\frac{37x^{3}}{150}-\frac{\int x^{3}\mathrm{d}x}{10}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 0.74 times \frac{x^{3}}{3}.
\frac{37x^{3}}{150}-\frac{x^{4}}{40}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.1 times \frac{x^{4}}{4}.
\frac{37}{150}\times 4^{3}-\frac{4^{4}}{40}-\left(\frac{37}{150}\times 0^{3}-\frac{0^{4}}{40}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{704}{75}
Simplify.