Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}5\left(2+x\right)x\mathrm{d}x
Multiply -5 and -1 to get 5.
\int _{0}^{4}\left(10+5x\right)x\mathrm{d}x
Use the distributive property to multiply 5 by 2+x.
\int _{0}^{4}10x+5x^{2}\mathrm{d}x
Use the distributive property to multiply 10+5x by x.
\int 10x+5x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 10x\mathrm{d}x+\int 5x^{2}\mathrm{d}x
Integrate the sum term by term.
10\int x\mathrm{d}x+5\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
5x^{2}+5\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 10 times \frac{x^{2}}{2}.
5x^{2}+\frac{5x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 5 times \frac{x^{3}}{3}.
5\times 4^{2}+\frac{5}{3}\times 4^{3}-\left(5\times 0^{2}+\frac{5}{3}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{560}{3}
Simplify.