Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}\left(1.8125x-0.75x^{2}\right)x\mathrm{d}x
Use the distributive property to multiply -3.625x+1.5x^{2} by -0.5.
\int _{0}^{4}1.8125x^{2}-0.75x^{3}\mathrm{d}x
Use the distributive property to multiply 1.8125x-0.75x^{2} by x.
\int \frac{29x^{2}}{16}-\frac{3x^{3}}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{29x^{2}}{16}\mathrm{d}x+\int -\frac{3x^{3}}{4}\mathrm{d}x
Integrate the sum term by term.
\frac{29\int x^{2}\mathrm{d}x}{16}-\frac{3\int x^{3}\mathrm{d}x}{4}
Factor out the constant in each of the terms.
\frac{29x^{3}}{48}-\frac{3\int x^{3}\mathrm{d}x}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 1.8125 times \frac{x^{3}}{3}.
\frac{29x^{3}}{48}-\frac{3x^{4}}{16}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.75 times \frac{x^{4}}{4}.
\frac{29}{48}\times 4^{3}-\frac{3}{16}\times 4^{4}-\left(\frac{29}{48}\times 0^{3}-\frac{3}{16}\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{28}{3}
Simplify.