Evaluate
568
Share
Copied to clipboard
\int _{0}^{4}-25x+36x^{2}\mathrm{d}x
Use the distributive property to multiply -25+36x by x.
\int -25x+36x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -25x\mathrm{d}x+\int 36x^{2}\mathrm{d}x
Integrate the sum term by term.
-25\int x\mathrm{d}x+36\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{25x^{2}}{2}+36\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -25 times \frac{x^{2}}{2}.
-\frac{25x^{2}}{2}+12x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 36 times \frac{x^{3}}{3}.
-\frac{25}{2}\times 4^{2}+12\times 4^{3}-\left(-\frac{25}{2}\times 0^{2}+12\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
568
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}