Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-25x+36x^{2}\mathrm{d}x
Use the distributive property to multiply -25+36x by x.
\int -25x+36x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -25x\mathrm{d}x+\int 36x^{2}\mathrm{d}x
Integrate the sum term by term.
-25\int x\mathrm{d}x+36\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{25x^{2}}{2}+36\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -25 times \frac{x^{2}}{2}.
-\frac{25x^{2}}{2}+12x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 36 times \frac{x^{3}}{3}.
-\frac{25}{2}\times 4^{2}+12\times 4^{3}-\left(-\frac{25}{2}\times 0^{2}+12\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
568
Simplify.