Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}\frac{\left(-47+56.937x\right)\times 0.5x}{2}\mathrm{d}x
Combine 23.5x and 33.437x to get 56.937x.
\int _{0}^{4}\left(-47+56.937x\right)\times 0.25x\mathrm{d}x
Divide \left(-47+56.937x\right)\times 0.5x by 2 to get \left(-47+56.937x\right)\times 0.25x.
\int _{0}^{4}\left(-11.75+14.23425x\right)x\mathrm{d}x
Use the distributive property to multiply -47+56.937x by 0.25.
\int _{0}^{4}-11.75x+14.23425x^{2}\mathrm{d}x
Use the distributive property to multiply -11.75+14.23425x by x.
\int -\frac{47x}{4}+\frac{56937x^{2}}{4000}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{47x}{4}\mathrm{d}x+\int \frac{56937x^{2}}{4000}\mathrm{d}x
Integrate the sum term by term.
-\frac{47\int x\mathrm{d}x}{4}+\frac{56937\int x^{2}\mathrm{d}x}{4000}
Factor out the constant in each of the terms.
-\frac{47x^{2}}{8}+\frac{56937\int x^{2}\mathrm{d}x}{4000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -11.75 times \frac{x^{2}}{2}.
-\frac{47x^{2}}{8}+\frac{18979x^{3}}{4000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 14.23425 times \frac{x^{3}}{3}.
-\frac{47}{8}\times 4^{2}+\frac{18979}{4000}\times 4^{3}-\left(-\frac{47}{8}\times 0^{2}+\frac{18979}{4000}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{26208}{125}
Simplify.