Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}\frac{-3.6x^{2}\left(-0.1\right)}{2}\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{4}\frac{0.36x^{2}}{2}\mathrm{d}x
Multiply -3.6 and -0.1 to get 0.36.
\int _{0}^{4}0.18x^{2}\mathrm{d}x
Divide 0.36x^{2} by 2 to get 0.18x^{2}.
\int \frac{9x^{2}}{50}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{9\int x^{2}\mathrm{d}x}{50}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{3x^{3}}{50}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{3}{50}\times 4^{3}-\frac{3}{50}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{96}{25}
Simplify.