Evaluate
22500
Share
Copied to clipboard
\int _{0}^{30}1500-50x\mathrm{d}x
Use the distributive property to multiply 50 by 30-x.
\int 1500-50x\mathrm{d}x
Evaluate the indefinite integral first.
\int 1500\mathrm{d}x+\int -50x\mathrm{d}x
Integrate the sum term by term.
\int 1500\mathrm{d}x-50\int x\mathrm{d}x
Factor out the constant in each of the terms.
1500x-50\int x\mathrm{d}x
Find the integral of 1500 using the table of common integrals rule \int a\mathrm{d}x=ax.
1500x-25x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -50 times \frac{x^{2}}{2}.
1500\times 30-25\times 30^{2}-\left(1500\times 0-25\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
22500
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}