Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}\left(x^{2}-2x\right)\left(x+3\right)\mathrm{d}x
Use the distributive property to multiply x by x-2.
\int _{0}^{3}x^{3}+3x^{2}-2x^{2}-6x\mathrm{d}x
Apply the distributive property by multiplying each term of x^{2}-2x by each term of x+3.
\int _{0}^{3}x^{3}+x^{2}-6x\mathrm{d}x
Combine 3x^{2} and -2x^{2} to get x^{2}.
\int x^{3}+x^{2}-6x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x+\int -6x\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}+\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}-6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}-3x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -6 times \frac{x^{2}}{2}.
\frac{3^{4}}{4}+\frac{3^{3}}{3}-3\times 3^{2}-\left(\frac{0^{4}}{4}+\frac{0^{3}}{3}-3\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{4}
Simplify.