Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}-54.6x-9.1x^{2}-118.8-19.8x\mathrm{d}x
Apply the distributive property by multiplying each term of 9.1x+19.8 by each term of -6-x.
\int _{0}^{3}-74.4x-9.1x^{2}-118.8\mathrm{d}x
Combine -54.6x and -19.8x to get -74.4x.
\int -\frac{372x}{5}-\frac{91x^{2}}{10}-118.8\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{372x}{5}\mathrm{d}x+\int -\frac{91x^{2}}{10}\mathrm{d}x+\int -118.8\mathrm{d}x
Integrate the sum term by term.
-\frac{372\int x\mathrm{d}x}{5}-\frac{91\int x^{2}\mathrm{d}x}{10}+\int -118.8\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{186x^{2}}{5}-\frac{91\int x^{2}\mathrm{d}x}{10}+\int -118.8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -74.4 times \frac{x^{2}}{2}.
-\frac{186x^{2}}{5}-\frac{91x^{3}}{30}+\int -118.8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -9.1 times \frac{x^{3}}{3}.
-\frac{186x^{2}}{5}-\frac{91x^{3}}{30}-\frac{594x}{5}
Find the integral of -118.8 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{186}{5}\times 3^{2}-\frac{91}{30}\times 3^{3}-118.8\times 3-\left(-\frac{186}{5}\times 0^{2}-\frac{91}{30}\times 0^{3}-118.8\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{7731}{10}
Simplify.