Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}\left(1.34+0.2211x\right)x\mathrm{d}x
Use the distributive property to multiply 2+0.33x by 0.67.
\int _{0}^{3}1.34x+0.2211x^{2}\mathrm{d}x
Use the distributive property to multiply 1.34+0.2211x by x.
\int \frac{67x}{50}+\frac{2211x^{2}}{10000}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{67x}{50}\mathrm{d}x+\int \frac{2211x^{2}}{10000}\mathrm{d}x
Integrate the sum term by term.
\frac{67\int x\mathrm{d}x}{50}+\frac{2211\int x^{2}\mathrm{d}x}{10000}
Factor out the constant in each of the terms.
\frac{67x^{2}}{100}+\frac{2211\int x^{2}\mathrm{d}x}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 1.34 times \frac{x^{2}}{2}.
\frac{67x^{2}}{100}+\frac{737x^{3}}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 0.2211 times \frac{x^{3}}{3}.
\frac{67}{100}\times 3^{2}+\frac{737}{10000}\times 3^{3}-\left(\frac{67}{100}\times 0^{2}+\frac{737}{10000}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{80199}{10000}
Simplify.