Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}-3x^{2}\left(-x\right)+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Use the distributive property to multiply -3x^{2}+12x+2 by -x.
\int _{0}^{3}3x^{2}x+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Multiply -3 and -1 to get 3.
\int _{0}^{3}3x^{3}+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int _{0}^{3}3x^{3}+12x^{2}\left(-1\right)+2\left(-1\right)x\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{3}3x^{3}-12x^{2}+2\left(-1\right)x\mathrm{d}x
Multiply 12 and -1 to get -12.
\int _{0}^{3}3x^{3}-12x^{2}-2x\mathrm{d}x
Multiply 2 and -1 to get -2.
\int 3x^{3}-12x^{2}-2x\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{3}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int -2x\mathrm{d}x
Integrate the sum term by term.
3\int x^{3}\mathrm{d}x-12\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{4}}{4}-12\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 3 times \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-4x^{3}-2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -12 times \frac{x^{3}}{3}.
\frac{3x^{4}}{4}-4x^{3}-x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -2 times \frac{x^{2}}{2}.
\frac{3}{4}\times 3^{4}-4\times 3^{3}-3^{2}-\left(\frac{3}{4}\times 0^{4}-4\times 0^{3}-0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{225}{4}
Simplify.