Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}156-26x-36x+6x^{2}\mathrm{d}x
Apply the distributive property by multiplying each term of -26+6x by each term of -6+x.
\int _{0}^{3}156-62x+6x^{2}\mathrm{d}x
Combine -26x and -36x to get -62x.
\int 156-62x+6x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 156\mathrm{d}x+\int -62x\mathrm{d}x+\int 6x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 156\mathrm{d}x-62\int x\mathrm{d}x+6\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
156x-62\int x\mathrm{d}x+6\int x^{2}\mathrm{d}x
Find the integral of 156 using the table of common integrals rule \int a\mathrm{d}x=ax.
156x-31x^{2}+6\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -62 times \frac{x^{2}}{2}.
156x-31x^{2}+2x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
156\times 3-31\times 3^{2}+2\times 3^{3}-\left(156\times 0-31\times 0^{2}+2\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
243
Simplify.