Evaluate
243
Share
Copied to clipboard
\int _{0}^{3}156-26x-36x+6x^{2}\mathrm{d}x
Apply the distributive property by multiplying each term of -26+6x by each term of -6+x.
\int _{0}^{3}156-62x+6x^{2}\mathrm{d}x
Combine -26x and -36x to get -62x.
\int 156-62x+6x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 156\mathrm{d}x+\int -62x\mathrm{d}x+\int 6x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 156\mathrm{d}x-62\int x\mathrm{d}x+6\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
156x-62\int x\mathrm{d}x+6\int x^{2}\mathrm{d}x
Find the integral of 156 using the table of common integrals rule \int a\mathrm{d}x=ax.
156x-31x^{2}+6\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -62 times \frac{x^{2}}{2}.
156x-31x^{2}+2x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
156\times 3-31\times 3^{2}+2\times 3^{3}-\left(156\times 0-31\times 0^{2}+2\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
243
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}