Evaluate
91.9299
Share
Copied to clipboard
\int _{0}^{3}64-10.72x-17.32x+2.9011x^{2}\mathrm{d}x
Apply the distributive property by multiplying each term of -16+4.33x by each term of -4+0.67x.
\int _{0}^{3}64-28.04x+2.9011x^{2}\mathrm{d}x
Combine -10.72x and -17.32x to get -28.04x.
\int 64-\frac{701x}{25}+\frac{29011x^{2}}{10000}\mathrm{d}x
Evaluate the indefinite integral first.
\int 64\mathrm{d}x+\int -\frac{701x}{25}\mathrm{d}x+\int \frac{29011x^{2}}{10000}\mathrm{d}x
Integrate the sum term by term.
\int 64\mathrm{d}x-\frac{701\int x\mathrm{d}x}{25}+\frac{29011\int x^{2}\mathrm{d}x}{10000}
Factor out the constant in each of the terms.
64x-\frac{701\int x\mathrm{d}x}{25}+\frac{29011\int x^{2}\mathrm{d}x}{10000}
Find the integral of 64 using the table of common integrals rule \int a\mathrm{d}x=ax.
64x-\frac{701x^{2}}{50}+\frac{29011\int x^{2}\mathrm{d}x}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -28.04 times \frac{x^{2}}{2}.
64x-\frac{701x^{2}}{50}+\frac{29011x^{3}}{30000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2.9011 times \frac{x^{3}}{3}.
64\times 3-\frac{701}{50}\times 3^{2}+\frac{29011}{30000}\times 3^{3}-\left(64\times 0-\frac{701}{50}\times 0^{2}+\frac{29011}{30000}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{919299}{10000}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}