Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -12x-12x^{2}-6x^{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int -12x\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int -6x^{3}\mathrm{d}x
Integrate the sum term by term.
-12\int x\mathrm{d}x-12\int x^{2}\mathrm{d}x-6\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
-6x^{2}-12\int x^{2}\mathrm{d}x-6\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -12 times \frac{x^{2}}{2}.
-6x^{2}-4x^{3}-6\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -12 times \frac{x^{3}}{3}.
-6x^{2}-4x^{3}-\frac{3x^{4}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -6 times \frac{x^{4}}{4}.
-6\times 3^{2}-4\times 3^{3}-\frac{3}{2}\times 3^{4}-\left(-6\times 0^{2}-4\times 0^{3}-\frac{3}{2}\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{567}{2}
Simplify.